
Verifying Payment Channels with TLA+

Matthias Grundmann, Hannes Hartenstein
Institute of Information Security and Dependability (KASTEL)
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Abstract—A payment channel protocol does not only have to
provide the payment functionality, it also has to fulfill security
guarantees such as ensuring that an honest party receives their
correct balance. For complexity reasons, it is typically difficult to
assess the security of such a protocol or to find counterexamples
in insecure protocols. In this poster, we present an approach to
specify functional as well as security properties for a payment
channel protocol in TLA+ and show that a Lightning Network-
style protocol fulfills the required properties. In case a counterex-
ample is found, we provide protocol developers with a graphical
and intuitive output. We present the challenges we faced and our
approach to meeting these challenges.

I. INTRODUCTION

Payment channel networks improve the number of trans-
actions performed per time unit by ‘off-loading’ transactions
from a first layer, typically a blockchain, to a second layer.
A payment channel is created by two parties locking funds
in a shared account on the underlying first layer. Both parties
store the state of how the channel’s funds are distributed. The
two parties can perform transactions off-chain by updating
their shared state to a state with a different distribution of the
channel’s funds. At any time, each party can close the channel
by publishing the latest state on the first layer. The security
model of payment channels assumes that the counterparty
is untrusted and adversarial. A dishonest party might close
the channel in an outdated state that has a distribution of
funds favorable for this party. In this setting, a payment
channel protocol should guarantee that a party will finally
receive their correct balance on the first layer if it follows the
protocol. Developing a protocol for payment channels such
as the Lightning Network [1] is a challenging task because
the proposed protocols are complex and various edge cases
need to be considered. Therefore, we address the following
research question: How can one verify correctness and security
properties of payment channel network protocols in a way that
is accessible to protocol developers?

We approach this research question by making use of TLA+.
The Temporal Logic of Actions [2] is a logic for specifying
concurrent systems and is notated using the language TLA+

[3]. A specification in TLA+ specifies a set of initial states and
actions that define state transitions and, thus, define possible
successor states. To reason about a specification, TLA+ allows

This work was supported by funding from the topic Engineering Secure
Systems of the Helmholtz Association (HGF) and by KASTEL Security
Research Labs.

for specifying properties such as invariants that must hold in
every possible state or properties that must hold in a series
of states. A model checker (e.g., TLC [4], Apalache [5]) can
be used to explore all possible states and validate whether the
specified invariants and properties hold.

Related Work: Previous work made use of TLA+ to analyze
a state channel protocol [6], to reason about the security
of smart contracts [7], to analyze the synchronization of
the Tendermint Blockchain [8], and to prove properties of
a cross-chain swap protocol [9]. The security properties of
the Lightning Network’s protocol were shown in [10] using a
different approach, namely the Universal Composability (UC)
framework. While the UC proof can be considered more
fundamental and comprehensive, we take an alternative path to
provide an intuitive presentation of counterexamples found in
insecure variants of a protocol during protocol development.

II. PAYMENT CHANNELS IN TLA+

As a use case, we chose to specify a protocol for payment
channels based on Bitcoin that is an abstracted version of the
Lightning Network’s specification [11]. Our specification has
approximately 1,200 lines of code and is available online [12].
The protocol’s security property is that an honest party finally
receives the party’s correct balance even if the other party
cheats. In this section, we explain the challenges we faced and
how we approached them: modeling the underlying blockchain
[13] and transactions with hashes and signatures, specifying
progress of time, allowing a dishonest party to deviate from
the protocol while still keeping the state space explorable,
and providing a protocol developer with an intuitive and
understandable output in case a counterexample is found.

Specification of the Blockchain. To specify the construction
of payment channels, we need a specification of transactions
that are used in the protocol and the blockchain. The specifi-
cation of this underlying layer must, on the one hand, model
all aspects that are required by the payment channel protocol
and, on the other hand, be as simple as possible so that the
specification can be efficiently model-checked. Further, the
specification of the blockchain and transactions must be an
abstraction of Bitcoin so that counterexamples found using
the specification can be transferred to the real world.

To meet these requirements, we follow the UTXO (unspent
transaction outputs) model of Bitcoin. A transaction consists of
inputs and outputs; inputs reference outputs that they spend;
outputs impose conditions which must be met by an input
spending the output. A condition can be the requirement to
provide a signature matching a given key or to provide a978-1-6654-9538-7/22/$31.00 ©2022 IEEE

Fig. 1. Possible honest behaviors defined by the module PaymentChannelUser
specifying the states (nodes) and actions (arrows) of a user inside a payment
channel. For readability, actions leading to the state ‘closed’ are omitted.

preimage to a given hash value. To model these conditions,
we developed an abstraction of signatures and hash functions
that models the aspects of signatures and hash functions but is
as simple as possible so that model-checking is possible. We
model transaction IDs by assigning unique integer values as
transaction ID to each newly created transaction and assign a
new transaction ID if a transaction is changed. Having these
components to model transactions, we model the blockchain
as the set of all published transactions.

Specification of the Payment Channel Protocol. A payment
channel protocol is a protocol between two users. The specifi-
cation starts with an initial state in which the ledger contains
only one transaction with an output that is spendable by one
user. From that state on, the steps by both users allow for the
creation, updates, and the closing of the payment channel. We
specify the steps of the payment channel protocol by modeling
the two users and specifying all possible actions that a user can
perform (see Fig. 1). Each user stores the name of the current
protocol state, variables and an inventory of transactions that
the user can publish on the blockchain. The actions manipulate
the user’s variables or the ledger or they exchange messages
between the users.

Adversarial Behavior. We model faults and adversarial be-
havior by specifying that one of the users can be dishonest.
A dishonest user is explicitly modeled with the abilities that

a cheating protocol participant has in the real world: The
dishonest user can publish an outdated transaction, create
transactions from keys and secrets known to the dishonest
user, or stop acting at all. We do not model that a dishonest
user sends invalid messages to the honest user because the
honest user can detect such faulty behavior by comparing a
message against the expected message according to protocol’s
specification. We also do not model actions that use side-
channels that break assumptions of the protocol such as DoS
attacks. During model checking, the model checker iterates
through all possible executions of the protocol including all
possible actions by the dishonest user and the model checker
checks whether the specified security properties hold.

Time Flow. The specification uses a weak fairness property
which means that users perform actions if they can, i.e. the
execution stops only if no further action is possible. Without
this property, we could not show liveness properties, e.g.,
that a channel will finally be closed. We model time as the
current height of the blockchain. To model that the protocol
can progress quickly or slowly with respect to the growth of
the blockchain, we specify that the height of the blockchain
grows at arbitrary times between actions of the users. The
protocol for payment channels contains requirements that users
need to perform an action before a certain point in time, e.g.,
punish a dishonest user before an outdated output becomes
spendable. We model this by specifying that time does not
advance further than such a point in time as long as the timely
action is required. To reduce the number of states that are
explored when model-checking, we specify the flow of time
so that time advances directly to these points in time at which
certain actions need to be performed.

Understanding Counterexamples. A counterexample is a
series of actions that leads to a violation of a specified invariant
or property. In a flawed protocol, for example, a dishonest user
might be able to receive a part of the honest user’s balance
which breaks the security property. To support developers in
understanding counterexamples and quickly checking a variant
of the protocol, we developed a visualization of states of the
payment channel protocol (see [14]). The visualization allows
a developer to navigate through each intermediate state of
the counterexample so that the developer can learn where the
specification is flawed.

III. RESULTS AND FUTURE WORK

We measured the runtime of model-checking in a scenario
in which one user opens a payment channel with ten coins,
then pays seven coins to other party and then the other party
sends back two concurrent payments of two and three coins.
The explored state space contains 1,131,490 distinct states
and the runtime of TLC is about two hours on a standard
notebook. Most counterexamples are, however, found within
a few seconds or minutes. The number of states is heavily
influenced by the adversarial behavior: If both users are honest,
the state space contains only 69,440 distinct states. As future
work we would like to further improve the runtime and will
address multi-hop payments.

REFERENCES

[1] J. Poon and T. Dryja, “The Bitcoin Lightning Network: Scalable Off-
Chain Instant Payments,” Tech. Rep., 2016.

[2] L. Lamport, “The temporal logic of actions,” ACM Transactions on
Programming Languages and Systems, vol. 16, no. 3, pp. 872–923,
May 1994. [Online]. Available: https://doi.org/10.1145/177492.177726

[3] ——, Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. USA: Addison-Wesley Longman Publishing
Co., Inc., 2002.

[4] Various. (2021) TLA+ Toolbox. [Online]. Available: https://github.com/
tlaplus/tlaplus

[5] I. Konnov, J. Kukovec, and T.-H. Tran, “TLA+ model checking made
symbolic,” Proceedings of the ACM on Programming Languages,
vol. 3, no. OOPSLA, pp. 123:1–123:30, Oct. 2019. [Online]. Available:
https://doi.org/10.1145/3360549

[6] T. Close, “Breaking state channels with TLA+,” Jun. 2020. [Online].
Available: https://blog.statechannels.org/breaking-state-channels/

[7] J. Kolb, J. Yang, R. H. Katz, and D. E. Culler, “Quartz:
A Framework for Engineering Secure Smart Contracts,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2020-178, Aug. 2020. [Online]. Available: http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2020/EECS-2020-178.html

[8] S. Braithwaite, E. Buchman, I. Konnov, Z. Milosevic, I. Stoilkovska,
J. Widder, and A. Zamfir, “Formal Specification and Model Checking
of the Tendermint Blockchain Synchronization Protocol (Short Paper),”
in 2nd Workshop on Formal Methods for Blockchains (FMBC
2020), ser. OpenAccess Series in Informatics (OASIcs), B. Bernardo
and D. Marmsoler, Eds., vol. 84. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2020, pp. 10:1–10:8, iSSN:
2190-6807. [Online]. Available: https://drops.dagstuhl.de/opus/volltexte/
2020/13423

[9] Z. Nehaı̈, F. Bobot, S. Tucci-Piergiovanni, C. Delporte-Gallet, and
H. Fauconnier, “A TLA+ Formal Proof of a Cross-Chain Swap,”
in 23rd International Conference on Distributed Computing and
Networking, ser. ICDCN 2022. New York, NY, USA: Association for
Computing Machinery, Jan. 2022, pp. 148–159. [Online]. Available:
https://doi.org/10.1145/3491003.3491006

[10] A. Kiayias and O. S. T. Litos, “A Composable Security Treatment of the
Lightning Network,” in 2020 IEEE 33rd Computer Security Foundations
Symposium (CSF), Jun. 2020, pp. 334–349, iSSN: 2374-8303.

[11] Various. (2021) Lightning Network In-Progress Specifications. [Online].
Available: https://github.com/lightning/bolts

[12] M. Grundmann. (2021) Specification of Protocol for Payment
Channel in TLA+. [Online]. Available: https://github.com/kit-dsn/
payment-channel-tla

[13] M. Grundmann and H. Hartenstein, “Fundamental Properties of the
Layer Below a Payment Channel Network,” in Data Privacy Man-
agement, Cryptocurrencies and Blockchain Technology, ser. Lecture
Notes in Computer Science, J. Garcia-Alfaro, G. Navarro-Arribas, and
J. Herrera-Joancomarti, Eds. Cham: Springer International Publishing,
2020, pp. 409–420.

[14] M. Grundmann. (2022) Exemplary Output of Visualization
of Counterexamples. [Online]. Available: https://github.com/kit-dsn/
payment-channel-tla/tree/icbc22/visualization

https://doi.org/10.1145/177492.177726
https://github.com/tlaplus/tlaplus
https://github.com/tlaplus/tlaplus
https://doi.org/10.1145/3360549
https://blog.statechannels.org/breaking-state-channels/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-178.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-178.html
https://drops.dagstuhl.de/opus/volltexte/2020/13423
https://drops.dagstuhl.de/opus/volltexte/2020/13423
https://doi.org/10.1145/3491003.3491006
https://github.com/lightning/bolts
https://github.com/kit-dsn/payment-channel-tla
https://github.com/kit-dsn/payment-channel-tla
https://github.com/kit-dsn/payment-channel-tla/tree/icbc22/visualization
https://github.com/kit-dsn/payment-channel-tla/tree/icbc22/visualization

	Introduction
	Payment Channels in TLA+
	Results and Future Work
	References

