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Abstract—A recent spam wave of IP addresses in the Bitcoin
P2P network allowed us to estimate the degree distribution of
reachable peers. The resulting distribution indicates that about
half of the reachable peers run with Bitcoin Core’s default setting
of a maximum of 125 concurrent connections and nearly all
connection slots are taken. We validate this result empirically.
We use our observations of the spam wave to group IP addresses
that belong to the same peer. By doing this grouping, we improve
on previous measurements of the number of reachable peers and
show that simply counting IP addresses overestimates the number
of reachable peers by 15 %. We revalidate previous work by using
our observations to estimate the number of unreachable peers.

I. INTRODUCTION

To join the Bitcoin [1] P2P network, new peers need to
find peers that are already part of the network. Each peer
has one or multiple addresses that can be used to find and
initiate connections to the peer. Bitcoin uses a decentralized
approach to disseminate addresses to peers: A peer announces
its own addresses by sending ADDR messages to its neighbors
and, based on certain conditions, the neighbors forward the
addresses to other peers. In July and August 2021, a huge
wave of addresses was flooded in the Bitcoin P2P network
that caused an increase in the number of addresses distributed
per day from 40,000 to about 6,000,000 unique addresses
per day [2]. These spam addresses did not belong to actual
peers and were sent by an unknown party. While we do not
know the purpose of sending the spam addresses, we look
at the effects that the spamming had and what information
about the topology of the Bitcoin P2P network can be learned
by observing the effects. We estimate the degree (number of
neighbors) of reachable peers. While previous work has shown
that the peer degree distribution of other cryptocurrencies’
P2P networks resembles a power law distribution [3]-[5], our
observations indicate that the peer degree distribution of the
Bitcoin P2P network is different and about half of the peers
have a degree of around 125. Because most peers run Bitcoin
Core [6] and 125 is the default maximum for connections in
Bitcoin Core [7], this finding means that many peers do not
have slots available for new incoming connections. We run an
experiment to validate this observation and find that more than
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50 % of all reachable peers do not accept additional incoming
connections or are close to their connection limit. We also
show that the majority of peers being hosted in the networks
of cloud providers have around 125 connections while the
networks of ISPs include peers that tend to have fewer
neighbors. Further, we find sets of addresses that belong to
the same reachable peers. This mapping shows that estimating
the number of reachable peers by counting reachable addresses
overestimates their number by about 15 %. Finally, we discuss
a coarse-grained model for the allocation of connection slots
in the Bitcoin P2P network. Based on this model, we estimate
that there are about 32,300 unreachable peers in the network
which aligns with estimations from previous work [8]-[10].
Related Work. While different methods to learn about the
topology of the Bitcoin P2P network have been proposed, most
of them were impractical or too costly to be run in the real Bit-
coin P2P network. A notable exception is AddressProbe [11]
that exploited an information leak in the handling of addresses
to infer connections between reachable peers. Miller et al.
used AddressProbe to infer the topology of the P2P network’s
subgraph that contains only reachable peers and calculated the
resulting peer degree distribution [11]. The degree distribution
showed that the majority of reachable peers had a degree
between eight and twelve which differs strongly from our
results because our results also include connections between
reachable and unreachable peers. Other methods to infer parts
of the topology [3], [12]-[14] were too expensive to be run in
the Bitcoin P2P network. Topology inference approaches have
also been proposed for other cryptocurrencies’ P2P networks
[4], [5], [15], [16] and the peer degree distributions of the P2P
networks of the Bitcoin testnet [3], Monero [4], and Ethereum
[5] have been analyzed. The Bitcoin transaction network,
sometimes simply referred to as the ‘Bitcoin network’, is the
graph defined by the transactions in the Bitcoin blockchain.
The topology of this network has been analyzed previously
[17]-[22] but the transaction network is completely different
from the Bitcoin P2P network which is the focus of this work.

II. OBSERVATIONS AND MONITORING SETUP

In July 2021, user piotr_n reported in the BitcoinTalk Forum
[23] that spam addresses were distributed in the Bitcoin P2P
network. piotr_n found that the behavior of the spamming
peers is to connect to reachable peers, send them 500 ADDR
messages with ten spam addresses each, and then disconnect.
We observed the behavior described by piotr_n at a reachable
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Fig. 1. Overview of the peer degree estimation. A reachable peer p is con-
nected to a spamming peer, our monitor and n, —2 other peers. The spamming
peer sends 500-10 addresses to the reachable peer (I). The peer propagates the
addresses to all neighbors except the spamming peer (II). From the number
of propagated addresses, the monitor can estimate the number of neighbors.

peer: During July and August 2021, about 400 times one of
this peer’s neighbors sent within a few seconds a batch of
5,000 unique IPv4 addresses. Over the observed time, the spam
originated from 243 different IP addresses. All spam addresses
in a batch had the same associated timestamp which was set
to a value up to nine minutes into the future. We analyzed
the distribution of the received spam addresses and found that
they were distributed uniformly over the IPv4 address space
and included IP addresses from reserved IPv4 address blocks
like 127.0.0.0/8. We take this finding as evidence that the spam
addresses were randomly chosen.

Our monitoring setup consists of three monitor nodes that
connect to all reachable peers but do not accept incoming
connections. Two of those monitor nodes are located in the
network of our university (AS 34878) and a third monitor
node is located in a different location (AS 680). All monitor
peers log received ADDR messages and connections to other
peers that are opened or closed.

III. ESTIMATING THE DEGREE OF REACHABLE PEERS

A reachable peer that receives the spam addresses from a
spamming peer and is connected to one of our monitor nodes,
propagates an approximately equal part of the addresses to
each of the reachable peer’s neighbors. From the number of
spam addresses propagated to our monitor, we can estimate
the number of neighbors of the reachable peer:

Bitcoin Core, the Bitcoin reference client that is used by
most peers [6], accepts addresses with an associated timestamp
of up to ten minutes into the future and propagates addresses
until their associated timestamp is older than ten minutes.
Additionally, an address is only propagated if it was received
in an ADDR message with at most ten entries. Because both
conditions are met when a peer receives the spam addresses,
a peer that runs Bitcoin Core considers these addresses for
propagation to its neighbors. However, Bitcoin Core forwards
only routable addresses and about 1.3 % of the IPv4 address
space are considered as unroutable [24]. Therefore, on average
4,935 addresses of the 5000 received addresses are forwarded.
Because each routable address is forwarded to two peers but
not the peer that the address was received from, a peer p with
n, neighbors forwards each address to two out of n, — 1

neighbors and sends on average ¢, = 4,935 - 271 addresses

to each neighbor. Consequently, our monitor nodes receive on
average ¢, addresses from each peer that receives 5,000 spam
addresses and we can estimate the number of neighbors of each
reachable peer based on these observations (see Fig. 1). While
the main idea of this estimation approach has been proposed
in 2014 by Biryukov et al. [12, Section 10.1], to the best of
our knowledge results of this method applied to the Bitcoin
P2P network have so far not been published.

A. Estimation and Validation

Our monitor nodes are connected to each reachable peer
and receive the propagated spam addresses (see Fig. 1, II).
However, our monitor nodes also receive spam addresses that
are not directly forwarded from a spamming peer (Fig. 1, III).
To filter out these indirectly forwarded messages, (1) we
analyze only ADDR messages received at the monitor that
contain at least four entries, (2) we select only those addresses
that have a timestamp that is three to ten minutes into the
future from the point when the ADDR message was received
and (3) we analyze only addresses if c¢,;, the number of
addresses we received with the same timestamp ¢ from peer p,
is greater than ten. For each batch of spam address messages
with size ¢,;, we calculate n,; = 1+ 4,935-2/¢,, as an
intermediate estimate for the number of neighbors of peer p.
As the intermediate estimates contain outliers, we calculate
the estimate n,, for the number of neighbors of peer p by de-
termining the median of all intermediate estimates 7, ¢ during
the time window of one day. The length of this time window
is chosen as a trade-off between a short time window during
which the number of a peer’s neighbors remains constant
and a longer time window during which we collected more
observations to receive a more precise estimate.

To validate the estimation approach, we logged at three
reachable validation peers the number of neighbors and com-
pared the logs to our estimation. As ground truth we take
for each peer the peer’s average connection count per day.
We compute the mean deviation of each estimate from this
ground truth in percent and average the absolute percentage
points. This calculation leads to an average deviation of 4.1 %
which means that the estimation is reasonably reliable.

B. Resulting Degree Distribution

One important topological characteristic of a network is
the distribution of peer degrees which can be estimated based
on our observations. Using the method described above, we
receive one estimate per peer per day. To calculate the distri-
bution of peer degrees across the Bitcoin P2P network, we
calculated a histogram (see Fig. 2) of all estimates during
the observation time period. The distribution shows that the
majority of reachable peers have an estimated degree of around
125, which is the default maximum number of connections in
Bitcoin Core. These results suggest that about 50 % of the
reachable peers use this default configuration and all of their
connection slots are filled. The distribution of estimated peer
degrees has a long tail of a few peers that have more than
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Fig. 2. Normalized histogram (with bin width of 5) of the peer degree of
all reachable peers estimated from our observations of the spam wave during
July and August 2021. The peak at 125 represents 5 - 3.8 % = 19 % of all
peers. The colors indicate our categorization of a peer’s autonomous system.

140 connections. We suppose that there are reachable peers
with even more connections, however, we can only estimate
the degree of peers with up to 1,000 connections.!

We looked up the autonomous system (AS) of each peer’s
address using Team Cymru’s IP to ASN Mapping Service
[25] and categorized each AS into the four categories ‘ISP’
(Internet Service Provider), ‘Cloud Provider’, ‘Both’, and
‘Uncategorized’. We manually classified ASes that contain a
large percentage of peers and retrieved the category for the
remaining ASes from the ASdb [26] database. Figure 2 shows
the distribution of peer degrees separated by the category of
a peer’s AS. While the median of estimated degrees for peers
hosted at cloud providers is 125, the median of estimated
degrees for peers located in networks by ISPs is 97. One reason
might be that peers running in data centers accumulate more
incoming connections because they are less often restarted and
their addresses are better distributed in the network because
they change their address less often than other peers.

C. Measurement of Available Slots for Incoming Connections

We validate the observation that many reachable peers
do not have slots for incoming connections available using
the following experiment. A reachable peer running Bitcoin
Core always accepts a new incoming connection but, if the
new connection fills the last remaining connection slot, a
connection is evicted. The evicted connection might be the
connection that was just accepted but it might also be a
previously existing connection.

In our experiment, we run a test peer that walks through
a list of all reachable peers and opens a TCP connection to
each peer. If a connection was established, the test peer waits
for three seconds and checks if the connection is still open. If
it is, the test peer opens four additional TCP connections to
this peer, waits for three seconds and checks whether all five
connections are still open.

IThis restriction is due to the condition that cp,t must be greater than
ten to distinguish between addresses that were directly forwarded after being
received from a spamming peer and addresses that were received from another
peer. With the knowledge of which spam addresses are sent to which peer,
this restriction is not necessary and higher degrees can also be estimated.
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Fig. 3. A peer with multiple reachable IP addresses is connected to the
monitor with each IP address. By observing the propagated spam, the monitor
can find IP addresses that belong to the same peer.

We ran the experiment in November 2021 from three
test peers located in two different ASes. To create the list
of reachable peers, we collected all addresses that we had
received in unsolicited ADDR messages at one of our monitors
on the day before. Our test peers were able to connect to on
average 9,461 peers of which 4,493 (47 %) accepted all five
incoming connections. On average, 2,360 (25 %) accepted the
first connection but not all five connections and 2,608 (28 %)
evicted already the first connection. We conclude that for 28 %
of the reachable peers the slots for incoming connections
are all taken while 25% of the reachable peers are close
to their capacity. Only 47 % of the reachable peers seem to
freely accept incoming connections. This result confirms our
interpretation of the peer degree distribution and shows that
slots for incoming connections are a limited resource.

IV. FINDING PEERS WITH MULTIPLE IP ADDRESSES

When counting the peers of the Bitcoin P2P network, it is a
typical assumption that each IP address belongs to exactly one
peer (cf. [8], [10], [27]-[31]). This assumption is not fulfilled
for the Bitcoin P2P network but, to the best of our knowledge,
there is no general practical way to find IP addresses that
belong to the same peer. However, our observation of the spam
wave allowed us to obtain such a grouping of IP addresses.

As far as we observed, the 5,000 spam addresses that
are sent to one peer with one timestamp are not sent to
another peer with the same timestamp. Thus, a batch of spam
addresses with the same timestamp mark a specific peer and
we can use these markers to find multiple IP addresses that
belong to the same peer (see Fig. 3). A spammed reachable
peer with multiple IP addresses forwards the spam addresses
on all of its IP addresses (Fig. 3, II). If tuples of spam
address and timestamp are received by the monitor from two
different IP addresses, we can match these IP addresses to the
same peer (III). False positives can occur if spam addresses
are propagated over multiple hops (IV). To filter out these
indirectly received spam addresses, we ignore spam addresses
that are received in an ADDR message that contains ten or
fewer addresses and we ignore spam addresses that have a
timestamp less than five minutes into the future. Further, we



only match two IP addresses to the same peer if there are
more than five tuples of spam address and timestamp that were
received by the monitor from both IP addresses.

We run this analysis on data collected by our monitor nodes
and obtain sets of IP addresses that belong to the same peers.
After merging all intersecting sets of IP addresses that belong
to the same peer, we obtain a mapping of 3,614 IP addresses to
1,449 peers. While there seems to be one peer having 286 IPv6
addresses of the same /118 subnet, the majority of peers (89 %)
have only two addresses. Most of these pairs of addresses are
an IPv4 and IPv6 address, however, there are some pairs that
are both IPv4 or IPv6 addresses. We validate the method using
three of our peers that are using an IPv4 and IPv6 address and
find that their IP addresses were correctly matched.

In August 2021, our monitor nodes were connected on
average to 8,647 reachable IP addresses per day of which on
average 2,220 IP addresses belonged to 1,091 of the 1,449
reachable peers with multiple IP addresses. Hence, our monitor
nodes were connected on average to 7,518 unique reachable
peers per day which shows that estimating the number of
reachable peers by counting reachable IP addresses overes-

timates the number of reachable peers by % ~ 15 %.

V. SUM OF PEER DEGREES AND RELATION TO THE
NUMBER OF (UNREACHABLE) PEERS

The slots offered by reachable peers for connections are
a limited resource. Now, we discuss a coarse-grained model
for the allocation of this resource. If the Bitcoin P2P network
consisted only of reachable peers that opened ten outgoing
connections, the number of incoming and outgoing connec-
tions in the network would be equal and we could infer the
total number of peers by dividing the number of all incoming
connections by ten. However, in the real network there is
also an unknown number of unreachable peers and not every
peer creates exactly ten outgoing connections. For instance,
there are peers (as our monitor nodes) that create outgoing
connections to all reachable peers. We call these peers ‘super
peers’. Further, there are peers that open connections to
many but not all of the reachable peers. We model these by
assuming ‘semi-super peers’ that open connections to half of
the reachable peers. Together with reachable and unreachable
peers, this results in an allocation as depicted in Fig. 4.

In the following, we give a rough estimation of how this
allocation might look like in the Bitcoin P2P network. We
have estimated above that the number of reachable peers
is about 7,518 peers. Assuming that each reachable (non-
super) peer opens ten connections, we estimate that there are
7,518 - 10 outgoing connections of reachable peers which
implies also 7,518 - 10 incoming connections from reachable
peers. From our measurements at three reachable peers in
October and November 2021, we assume that there are 18
super peers that are connected to all reachable peers in the
network and about 26 semi-super peers. The super peers
take up 18 - 7,518 connection slots in the network and the
semi-super peers take up 26 - 7,518/2 connection slots. To
estimate how many connections exist in the network in total,
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Fig. 4. Usage of connection slots of all reachable peers. We estimate
the number of outgoing connections of reachable peers and the number of
incoming connections from reachable peers, super peers, and semi-super peers.
From the inferred number of incoming connections from unreachable peers,
we estimate the number of unreachable peers.

we calculate the sum of all estimated peer degrees of peers
that have an estimated degree not higher than 130. We use this
cut-off of the default maximum of 125 and an error margin
of 4% and ignore peers with a higher degree because for
peers with a higher degree we know that they are not using
the default configuration and we do not know how many of
their connections are outgoing or incoming connections. Using
our estimated peer degree distribution, we obtain an estimate
of 700,541 filled connection slots. Subtracting the number
of incoming connections that we ascribe to reachable peers,
super peers, and semi-super peers, we receive a remaining
number of 317,123 connection slots that are probably filled
by unreachable peers.

To estimate the number of unreachable peers from the
number of connections of unreachable peers, we need to know
the number of outgoing connections of unreachable peers.
We determine the distribution of clients used by unreachable
peers by calculating the distribution of user agents that are
announced to our reachable peers. Based on their distribution
and the default number of outgoing connections created by
each client, we calculate that unreachable peers open on aver-
age 9.8 outgoing connections. This result leads to an estimated
number of 32,300 unreachable peers. This estimation lies in
the broad range of previous estimates and, thus, reconfirms
previous work [8]-[10].

VI. CONCLUSION

Based on the observation of a spam wave of addresses in
July and August 2021, we have determined the peer degree
distribution of the Bitcoin P2P network. As the openness
of the P2P network depends on reachable peers accepting
incoming connections, it is a notable result that about half
of the reachable peers are close to their connection limit.

A similar spam wave is not possible anymore in the Bitcoin
P2P network because, right before the spam wave started,
a change that reduces the impact of such spam by rate-
limiting ADDR propagation was implemented [32] and has
been released with Bitcoin Core 22.0 [33] in September 2021.
However, the revealed degree distribution and the improved
estimate of the number of reachable peers can be helpful
for refining models of the Bitcoin P2P network, enhancing
Bitcoin’s protocol, and measuring other P2P networks.
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