Bro vs Suricata

Two Approaches to
Network Security Monitoring

Christian Kreibich

christian@corelight.com
@ckreibich

https://twitter.com/ckreibich

Your speaker

“‘. corelight

Part 1

Background
on Bro

Already covered yesterday

https://dsn.tm.kit.edu/english/bro_program.php

Part 2

Background
on Suricata

October 16, 2008 (LAFAYETTE, Ind.) — The Open Information Security
Foundation (OISF, www.openinfosecfoundation.org) is proud to
announce its formation, made possible by a grant from the U.S.
Department of Homeland Security (DHS). The OISF has been chartered
and funded by DHS to build a next-generation intrusion detection and

prevention engine. This project will consider every new and existing
technology, concept and idea to build a completely open source
licensed engine. Development will be funded by DHS, and the end
product will be made available to any user or organization.

http://www.openinfosecfoundation.org

From: jonkman at jonkmans.com (Matt Jonkman)
To: discussion@lists.openinfosecfoundation.org
Date: Thu, 16 Oct 2008 21:00:32 -0400

Subject: [Discussion] Features

So here's my wish list:

1. Native multithreading.

2. IP Reputation Sharing

3. Native ipvb6

4. Native Hardware acceleration support

5. Scoring

A few dozen brainstorm emails later ...

From: hall.692 at osu.edu (Seth Hall)

To: discussion@lists.openinfosecfoundation.org

Date: Sun, 19 Oct 2008 00:25:34 -0400

Subject: [Discussion] I think everyone is describing Bro

Sorry, I just joined the list so I'm going to be doing some
odd quoting from the list archive :) I do want to point out
too, that I'm not writing this email to downplay OISFs goals
but rather to hopefully guide OISF toward improving an
existing opensource project (Bro - http://www.bro-ids.org/)
that already does much of what is being discussed on this
list.

... but 1.5 years later ...

= (OMPUTERWORLD WSERD Sion n | Register

Home > Security

NEWS

DHS, vendors unveil open source intrusion detection
engine

Developers look to replace Snort technology, whose backers rebut claims that new
Suricata engine is superior

OO0 OO0

By Jaikumar Vijayan
Computerworld |

The Open Information Security Foundation (OISF), a group funded by the —— MORELIKETHIS ——

U.S Department of Homeland Security (DHS) and several security vendors,)
Targeted cyberattacks test enterprise

Suricata == Snort++

= (COMPUTERWORLD SBERD SignIn | Register

The OISF would “really, really like to displace Snort as the next big IDS
engine out there," Roesch said. "But if you look at [Suricata's] detection

model it is exactly the same as Snort's," he added.

Roesch also downplayed the significance of Suricata’s multithreaded
architecture and claimed that its implementation would slow the
detection engine rather than make it faster. He acknowledged that
Suricata's automated protocol detection capability is useful, but
contended that other claimed benefits of the technology, such as IP

filtering, are not available on Version 1.0 of the new engine.

Though Suricata has been developed at least partly with government
funding, it is unlikely that it can be used in a classified computing
environment because it doesn't allow users the option of hiding the rules
they are using for inspecting network traffic, he said. Snort, on the other

hand, allows users this option, Roesch noted.

"OISF has wrapped Suricata in some cool computer science concepts,”

From https://github.com/snort3/snort3/blob/master/README.md ...

OVERVIEW

This version of Snort++ includes new features as well as all Snort 2.X features and bug fixes for the base version of Snort
except as indicated below:

Project = Snort++

Binary = snort

Version = 3.0.0-a4 build 235
Base = 2.9.8 build 383

Here are some key features of Snort++:

o Support multiple packet processing threads
« Use a shared configuration and attribute table
o Use a simple, scriptable configuration

o Make key components pluggable

« Autodetect services for portless configuration
o Support sticky buffers in rules

o Autogenerate reference documentation
 Provide better cross platform support

« Facilitate component testing

https://github.com/snort3/snort3/blob/master/README.md

USENIX Security ... 2006

Dynamic Application-Layer Protocol Analysis
for Network Intrusion Detection

Holger Dreger
TU Miinchen

dreger@in.tum.de

Anja Feldmann
TU Miinchen

Sfeldmann@in.tum.de

Abstract
Many network intrusion detection systems (NIDS) rely
on protocol-specific analyzers to extract the higher-level
semantic context from a traffic stream. To select the cor-
rect kind of analysis, traditional systems exclusively de-
pend on well-known port numbers. However, based on
our experience, increasingly significant portions of to-
day’s traffic are not classifiable by such a scheme. Yet for
a NIDS, this traffic is very interesting, as a primary rea-
son for not using a standard port is to evade security and
policy enforcement monitoring. In this paper, we dis-
cuss the design and implementation of a NIDS extension
to perform dynamic application-layer protocol analysis.

Michael Mai
TU Miinchen

maim@in.tum.de

Robin Sommer
ICSI

robin@icir.org

Vern Paxson
ICSI/LBNL

vern@icir.org

To select the correct analyzer for some traffic, a NIDS
faces the challenge of determining which protocol is in
use before it even has a chance to inspect the packet
stream. To date, NIDSs have resolved this difficulty by
assuming use of a set of well-known ports, such as those
assigned by IANA [19] or those widely used by con-
vention. If, however, a connection does not use one of
these recognized ports—or misappropriates the port des-
ignated for a different application—then the NIDS faces
a quandary: how does it determine the correct analyzer?

In practice, servers indeed do not always use the port
nominally associated with their application, either due
to benign or malicious intent. Benign examples include

Suricata ~ Snort 3

Typical signature

alert tcp $HOME_NET any —> $EXTERNAL_NET any
(msg:”ET TROJAN Likely Bot Nick in IRC”;
flow:established, to server;
flowbits:isset,is proto irc; content:”NICK %;
pcre:”/NICK .*USA.*[0-91{3,1}/1";
reference:url,doc.emergingthreats.net/2008124;
classtype:trojan-activity; s1d:2008124; rev:2;)

Traditional alert log

10/05/10-10:08:59.667372 [**] [1:2008124:2] ET
TROJAN Likely Bot Nick in IRC [**]
[Classification: Trojan Activity] [Priority: 3]
{TCP} 10.0.1.144:6984 -> 192.168.1.4:56068

(Today usually done via Suricata’s “EVE” JSON log)

Part 3

Architecture
comparison

Execution flow: Bro

Packet source
Run DPI,
qgueue traffic

events Drain event queue:

Execute event

Process |I/O source handler scripts

(alter state, write logs, ...)

Broker source
Propagate events

Execution flow: Suricata

Packet Packet Stream :
Detections

capture decode processing

Execution flow: Suricata runmodes

Stream :
. Detections Output
processing
Packet Packet
capture decode
Stream :
processing
Packet Packet
capture decode
Stream :
processing

Execution flow: Suricata runmodes

Packet Packet Stream :
. Detections Output
capture decode processing
Packet Packet Stream :
. Detections Output
capture decode processing
Packet Packet Stream :
: Detections Output
capture decode processing

Keeping state

® |n Bro: in scripts
o Tables, sets, ..., with DSL convenience
o Can be tricky if shared across cluster

® In Suricata: in rule language
o Named bits or counter variables, per flow/host/host-pair

alert tcp any any -> any any (msg:"More than Five Usernames!";
content:"jonkman"; flowint: usernamecount, +, 1;

flowint:usernamecount, >, 5;)

Parsing traffic

® |n Bro:in C++ or BinPAC

o Phasing out BinPAC, transitioning to HILTI / Spicy

o The latter do not depend on Bro, work w/ other tools

o Goal: safe grammars for syntax and semantics in DSL
® |n Suricata: in C or Rust

o Experimental Rust support since 4.0

o Parsers are Suricata-specific Rust shared libs

o Provides safety, but separates syntax and semantics

http://www.icir.org/hilti/

Parser example: Spicy [ACSAC'16]

module tar;

export type Archive = unit {
files: list<File>;
uint<8>(0x0); # Null byte
bytes &length=511;
bi

type File = unit ({
header: Header;
data : bytes &length=self.header.size;
bytes &length=512-(self.header.size mod 512)
Vi

type Type = enum {
REG=0, LNK=1, SYM=2, CHR=3, BLK=4, DIR=5, FIFO=6
}i

bytes depad(b: bytes) {
return b.match (/" ["\x00]+/); # Strip trailing padding
}

type Header = unit { *
name : bytes &length=100 &convert=depad($$);
mode : bytes &length=8 &convert=depad ($$) ;
uid : bytes &length=8 &convert=depad ($$) ;
gid : bytes &length=8 &convert=depad ($$) ;
size : bytes &length=12 &convert=depad($$).to_uint (8);
mtime : bytes &length=12 &convert=depad($$).to_time(8);
chksum: bytes &length=8 &convert=depad ($$) .to_uint (8);
tflag : bytes &length=1 &convert=Type ($$.to_uint ());
lname : bytes &length=100 &convert=depad ($$);
: bytes &length=88; # Skip further fields for brevity.
prefix: bytes &length=155 &convert=depad($$);
: bytes &length=12; # Padding.

http://www.icir.org/robin/papers/acsac16-spicy.pdf

Parser example: Rust spw17

pub struct TlsServerHelloV1l3Contents<’a> (
pub version: ul6,
pub random: &’afu8],
pub cipher: ulb6,

pub ext: Option<&’alu8]>,

pub fn parse_tls_server_hello_tlsvl3draftl8 (i:&[u8])
—> IResult<&[u8], TlsMessageHandshake>

do_parse! (1,
hv: be_ulé >>
random: take! (32) >>
cipher: be_ul6 >>
ext: opt! (length_bytes! (be_ul6)) >>
(
TlsMessageHandshake::ServerHelloVi3(
TlsServerHelloVl1l3Contents: :new (hv, random,
cipher, ext)

http://spw17.langsec.org/papers/chifflier-parsing-in-2017.pdf

Extensibility

® In Bro: naturally via scripting, also plugins
o Plugins allow native-code extensions without patching
o Can add e.g. entire protocol analyzer

® |n Suricata:

o Monolithic architecture, usually need to patch ...
O ... unless Lua suffices: can add parsers, detectors, and
loggers

Suricata Lua script example: PDF obfuscation [NVISO]

tBlacklisted = {["/JavaScript"] = true}

function PDFCheckName (sInput)
for sMatchedName in sInput:gmatch"/[a-zA-Z0-9 #]+" do
if sMatchedName:find ("#") then
local sNormalizedName = sMatchedName:gsub ("#[a-fA-F0-9] [a-fA-F0-9]",
function (hex) return string.char (tonumber (hex:sub(2), 16)) end)
if tBlacklisted[sNormalizedName] then
return 1
end
end
end
return O
end

function init (args)
return {["http.response body"] = tostring(true)}
end

function match (args)
return PDFCheckName (tostring(args["http.response body"]))
end

alert http SEXTERNAL NET any -> SHOME NET any (msg:"NVISO PDF file lua";
flow:established, to client; luajit:pdfcheckname.lug classtype:policy-violation;
s1id:1000000; rev:1;)

https://blog.nviso.be/2017/03/10/developing-complex-suricata-rules-with-lua-part-1/

Extension example: JA3 in Bro

150-line Bro script:

https://github.com/salesforce/ja3/blob/master/bro/ja3.bro

Extension example: JA3 in Suricata

(&J Conversation 0 -O- Commits 19 #, Checks 0 Files changed 34

Changes from all commits ¥ Jump to... v 41,947 -102 EEEN

.‘.4\\)

https://github.com/OISF/suricata/pull/3297/files

From https://github.com/snort3/snort3/blob/master/README.md ...

OVERVIEW

This version of Snort++ includes new features as well as all Snort 2.X features and bug fixes for the base version of Snort
except as indicated below:

Project = Snort++

Binary = snort

Version = 3.0.0-a4 build 235
Base = 2.9.8 build 383

Here are some key features of Snort++:

o Support multiple packet processing threads

o Use a shared configuration and attribute table
o Use a simple, scriptable configuration

« Make key components pluggable

« Autodetect services for portless configuration

o Support sticky buffers in rules
o Autogenerate reference documentation
 Provide better cross platform support

« Facilitate component testing

https://github.com/snort3/snort3/blob/master/README.md

Feature comparison

Bro Suricata

Packet Multithreading

Scripting BSD capture GPL eBPF/XDP
|a nguage & (shunting, ...)

eventing Plugins DPI & DPD Hyperscan i]gali:"gnzc

Multiprocessing

Event

Cluster HILTI & File extraction Lua scripting

|0gS (logs and parsers/
JSON (e.g. fast.log) detections)

Comprehensive logs Protocol logs

& custom logs (HTTP, DNS, TLS, TFTP, SMB)

Rust parsers
Frameworks (ONE NFS TP

support Spicy

Part 3

Philosophies

Bro is a network monitor

e Nothing intrinsically implies badness

e Perfectly useful without detecting anything

e Just happens to be great for deeply behavioral,
stateful detections

Suricata is a misuse detector

® Purpose is to detect patterns, usually of badness

e Everything in architecture ties to signature rules

e Has gained Bro-esque features because the
community finds these useful, not because they’re
natural for the architecture

Culturally different projects

BSD vs GPL

Scripting vs “rulethink”

Research project vs off-the-shelf
Extensibility vs all-in-one

Roadmap prioritization

Thanks!

